Extended k-Nearest Neighbours based on Evidence Theory
نویسندگان
چکیده
An evidence theoretic classification method is proposed in this paper. In order to classify a pattern we consider its neighbours, which are taken as parts of a single source of evidence to support the class membership of the pattern. A single mass function or basic belief assignment is then derived, and the belief function and the pignistic (“betting rates”) probability function can be calculated. Then the (posterior) conditional pignistic probability function is calculated and used to decide the class label for the pattern. It is shown that such a classifier extends the standard majority voting based k-nearest neighbour classifier, and it is an approximation to the optimal Bayes classifier. In experiments this classifier performed as well as or better than the voting and distance weighted k-nearest neighbours classifiers with best k, and its performance became stable when the number of neighbours considered is greater than 4.
منابع مشابه
Pseudo-Likelihood Inference Underestimates Model Uncertainty: Evidence from Bayesian Nearest Neighbours
When using the K-nearest neighbours (KNN) method, one often ignores the uncertainty in the choice of K. To account for such uncertainty, Bayesian KNN (BKNN) has been proposed and studied (Holmes and Adams 2002 Cucala et al. 2009). We present some evidence to show that the pseudo-likelihood approach for BKNN, even after being corrected by Cucala et al. (2009), still significantly underest...
متن کاملA K-nearest neighbours method based on imprecise probabilities
K-nearest neighbours algorithms are among the most popular existing classification methods, due to their simplicity and their good performances. Over the years, several extensions of the initial method have been proposed. In this paper, we propose a K-nearest neighbours approach that uses the theory of imprecise probabilities, and more specifically lower previsions. We show that the proposed ap...
متن کاملSome improvements on NN based classifiers in metric spaces
The nearest neighbour (NN) and k-nearest neighbour (k-NN) classification rules have been widely used in Pattern Recognition due to its simplicity and good behaviour. Exhaustive nearest neighbour search may become unpractical when facing large training sets, high dimensional data or expensive dissimilarity measures (distances). During the last years a lot of fast NN search algorithms have been d...
متن کاملIndoor-localization using a mobile phone
In an era of mobile communication, the demand for indoor-localization is increasing. For instance, users could benefit from indoor-localization systems in complex indoor environments such as large shopping malls, museums, and location-based services (e.g. warn travelers to hurry to their gate). It is commonly known that GPS is unsuitable and inaccurate for these kinds of applications. Therefore...
متن کاملAn Approximate Nearest Neighbours Search Algorithm Based on the Extended General Spacefilling Curves Heuristic
In this paper, an algorithm for approximate nearest neighbours search in vector spaces is proposed. It is based on the Extended General Spacefilling Curves Heuristic (EGSH). Under this general scheme, a number of mappings are established between a region of a multidimensional real vector space and an interval of the real line, and then for each mapping the problem is solved in one dimension. To...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. J.
دوره 47 شماره
صفحات -
تاریخ انتشار 2004